7,237 research outputs found

    Resonance enhanced multiphoton ionisation spectroscopy of small halogenated molecules

    Get PDF

    Married Women\u27s Property Rights in North Dakota

    Get PDF

    The variation in morphology of perennial ryegrass cultivars throughout the grazing season and effects on organic matter digestibility

    Get PDF
    peer-reviewedThe grass plant comprises leaf, pseudostem, true stem (including inflorescence) and dead material. These components differ in digestibility, and variations in their relative proportions can affect sward quality. The objective of this study was to determine the change in the proportion and organic matter digestibility (OMD) of leaf, pseudostem, true stem and dead components of four perennial ryegrass cultivars (two tetraploids: Astonenergy and Bealey and two diploids: Abermagic and Spelga) throughout a grazing season. The DM proportions and in vitro OMD of leaf, pseudostem, true stem and dead in all cultivars were determined during ten grazing rotations between May 2011 and March 2012. There was an interaction between rotation and cultivar for leaf, pseudostem, true stem and dead proportions. In May and June, Astonenergy had the highest leaf and lowest true stem proportion (P pseudostem > true stem > dead. Bealey had the highest combined leaf and pseudostem proportion 0·92, which explains why it had the highest OMD. In this study, the tetraploid cultivars had the highest leaf and pseudostem proportion and OMD. For accurate descriptions of a sward in grazing studies and to accurately determine sward morphological composition, pseudostem should be separated from true stem, particularly during the reproductive stage when true stem is present

    Strong coupling between single photons in semiconductor microcavities

    Full text link
    We discuss the observability of strong coupling between single photons in semiconductor microcavities coupled by a chi(2) nonlinearity. We present two schemes and analyze the feasibility of their practical implementation in three systems: photonic crystal defects, micropillars and microdisks, fabricated out of GaAs. We show that if a weak coherent state is used to enhance the chi(2) interaction, the strong coupling regime between two modes at different frequencies occupied by a single photon is within reach of current technology. The unstimulated strong coupling of a single photon and a photon pair is very challenging and will require an improvement in mirocavity quality factors of 2-4 orders of magnitude to be observable.Comment: 4 page

    Extended grazing: A detailed analysis of Irish dairy farms

    Get PDF
    Profitability and factors affecting grazing season length were econometrically analyzed using a representative sample of Irish dairy farms. The objective of this study was to explore what potential exists on Irish dairy farms to extend the grazing season and to quantify the possible economic benefits that result from lengthening the grazing season. Regression results indicate that location factors affect the length of the grazing season, but even when physical factors are controlled, farmer characteristics, such as education, also affect the grazing season length. The results of a panel data analysis show that significant cost reductions can be achieved by extending the grazing season. Overall, the findings indicate that lengthening the grazing season offers a cost-saving alternative on many Irish dairy farms, which could contribute to strengthening the competitiveness of the Irish dairy sector

    Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities

    Get PDF
    The quality factors of modes in nearly identical GaAs and Al_{0.18}Ga_{0.82}As microdisks are tracked over three wavelength ranges centered at 980 nm, 1460 nm, and 1600 nm, with quality factors measured as high as 6.62x10^5 in the 1600-nm band. After accounting for surface scattering, the remaining loss is due to sub-bandgap absorption in the bulk and on the surfaces. We observe the absorption is, on average, 80 percent greater in AlGaAs than in GaAs and in both materials is 540 percent higher at 980 nm than at 1600nm.Comment: 4 pages, 2 figures, 1 table, minor changes to disucssion of Qrad and Urbach tai

    Ferumoxytol-enhanced magnetic resonance angiography for the assessment of potential kidney transplant recipients

    Get PDF
    Objectives: Traditional contrast-enhanced methods for scanning blood vessels using magnetic resonance imaging (MRI) or CT carry potential risks for patients with advanced kidney disease. Ferumoxytol is a superparamagnetic iron oxide nanoparticle preparation that has potential as an MRI contrast agent in assessing the vasculature. Methods: Twenty patients with advanced kidney disease requiring aorto-iliac vascular imaging as part of pre-operative kidney transplant candidacy assessment underwent ferumoxytol-enhanced magnetic resonance angiography (FeMRA) between December 2015 and August 2016. All scans were performed for clinical indications where standard imaging techniques were deemed potentially harmful or inconclusive. Image quality was evaluated for both arterial and venous compartments. Results: First-pass and steady-state FeMRA using incremental doses of up to 4 mg/kg body weight of ferumoxytol as intravenous contrast agent for vascular enhancement was performed. Good arterial and venous enhancements were achieved, and FeMRA was not limited by calcification in assessing the arterial lumen. The scans were diagnostic and all patients completed their studies without adverse events. Conclusions: Our preliminary experience supports the feasibility and utility of FeMRA for vascular imaging in patients with advanced kidney disease due for transplant listing, which has the advantages of obtaining both arteriography and venography using a single test without nephrotoxicity

    Effects of Training Intensity on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study

    Get PDF
    Background. Many physical interventions can improve locomotor function in individuals with motor incomplete spinal cord injury (iSCI), although the training parameters that maximize recovery are not clear. Previous studies in individuals with other neurologic injuries suggest the intensity of locomotor training (LT) may positively influence walking outcomes. However, the effects of intensity during training of individuals with iSCI have not been tested. Objective. The purpose of this pilot, blinded-assessor randomized trial was to evaluate the effects of LT intensity on walking outcomes in individuals with iSCI. Methods. Using a crossover design, ambulatory participants with iSCI \u3e1 year duration performed either high- or low-intensity LT for ≤20 sessions over 4 to 6 weeks. Four weeks following completion, the training interventions were alternated. Targeted intensities focused on achieving specific ranges of heart rate (HR) or ratings of perceived exertion (RPE), with intensity manipulated by increasing speeds or applying loads. Results. Significantly greater increases in peak treadmill speeds (0.18 vs 0.02 m/s) and secondary measures of metabolic function and overground speed were observed following high- versus low-intensity training, with no effects of intervention order. Moderate to high correlations were observed between differences in walking speed or distances and differences in HRs or RPEs during high- versus low-intensity training. Conclusion. This pilot study provides the first evidence that the intensity of stepping practice may be an important determinant of LT outcomes in individuals with iSCI. Whether such training is feasible in larger patient populations and contributes to improved locomotor outcomes deserves further consideration
    corecore